Nucleation and growth of calcium carbonate on surfaces is of broad importance in nature and technology, being essential to the calcification of organisms, while negatively impacting energy conversion through crystallization fouling, also called scale formation. Previous work studied how confinements, surface energies, and functionalizations affect nucleation and polymorph formation, with surface-water interactions and ion mobility playing important roles. However, the influence of surface nanostructures with nanocurvature—through pit and bump morphologies—on scale formation is unknown,...
Precise micropatterning on three-dimensional (3D) surfaces is desired for a variety of applications, from microelectronics to metamaterials, which can be realized by transfer printing techniques. However, a nontrivial deficiency of this approach is that the transferred microstructures are adsorbed on the target surface with weak adhesion, limiting the applications to external force-free conditions. We propose a scalable “photolithography–transfer–plating” method to pattern stable and durable microstructures on 3D metallic surfaces with precise dimension and location control of the...
Crystallization fouling, a process where mineral scales form on surfaces, is of broad importance in nature and technology, negatively impacting water treatment and electricity production. However, a rational methodology for designing materials with intrinsic resistance to scaling and scale adhesion remains elusive. Here, guided by nucleation physics, this work investigates the effect of coating composition and surface structure on the nucleation and growth mechanism of scale on metallic heat transfer surfaces nanoengineered by large-area techniques. This work observes that on...
Crystallization fouling, a process where scale forms on surfaces, is widespread in nature and technology, negatively affecting energy and water industries. Despite the effort, rationally designed surfaces that are intrinsically resistant to it remain elusive, due in part to a lack of understanding of how microfoulants deposit and adhere in dynamic aqueous environments. Here, we show that rational tuning of coating compliance and wettability works synergistically with microtexture to enhance microfoulant repellency, characterized by low adhesion and high removal efficiency of numerous...
Loss of transparency due to water vapor condensation, is a widespread problem across diverse applications such as windows, eyewear, displays, vehicles, and kitchenware. Conventional antifogging strategies relying on hydrophilic, or hydrophobic coatings, based on chemistry and/or nano-topography, can counteract up to mild water deposition, but lose functionality at excessive condensation environments. Here, we present a passive approach, rationally micropatterning an inherently hydrophilic hydrogel to maintain high transparency under supersaturation. Guided by optics and wetting...
Natural salinity gradients are a promising source of so-called “blue energy”, a renewable energy source that utilizes the free energy of mixing for power generation. One promising blue energy technology that converts these salinity gradients directly into electricity is reverse electrodialysis (RED). Used at its full potential, it could provide a substantial portion of the world’s electricity consumption. Previous theoretical and experimental works have been done on optimizing RED devices, with the latter often focusing on precious and expensive metal electrodes. However, in order to...
Atmospheric water harvesting provides decentralized and sustainable supplies of fresh water in areas away from natural water resources. However, an important challenge is that water sources such as fog are subject to contamination from airborne pollutants, especially near population centres. Here we demonstrate a rationally designed system that can capture fog at high efficiency while simultaneously degrading organic pollutants. At the heart of our design is a wire mesh coated with anatase titanium dioxide nanoparticles embedded in a polymer matrix. Once activated by sunlight, the...
Supercooled droplet freezing on surfaces occurs frequently in nature and industry, often adversely affecting the efficiency and reliability of technological processes. The ability of superhydrophobic surfaces to rapidly shed water and reduce ice adhesion make them promising candidates for resistance to icing. However, the effect of supercooled droplet freezing—with its inherent rapid local heating and explosive vaporization—on the evolution of droplet–substrate interactions, and the resulting implications for the design of icephobic surfaces, are little explored. Here we investigate...
Counteracting surface fogging to maintain surface transparency is important for a variety of applications including eyewear, windows and displays. Energy-neutral, passive approaches predominantly rely on engineering the surface wettability, but suffer from non-uniformity, contaminant deposition and lack of robustness, all of which substantially degrade durability and performance. Here, guided by nucleation thermodynamics, we design a transparent, sunlight-activated, photothermal coating to inhibit fogging. The metamaterial coating contains a nanoscopically thin percolating gold layer...
Organic hydrophobic layers targeting sustained dropwise condensation are highly desirable but suffer from poor chemical and mechanical stability, combined with low thermal conductivity. The requirement of such layers to remain ultrathin to minimize their inherent thermal resistance competes against durability considerations. Here, we investigate the long-term durability and enhanced heat-transfer performance of perfluorodecanethiol (PFDT) coatings compared to alternative organic coatings, namely, perfluorodecyltriethoxysilane (PFDTS) and perfluorodecyl acrylate (PFDA), the latter...